Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(15): e2309636121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38573964

RESUMO

Rates of microbial processes are fundamental to understanding the significance of microbial impacts on environmental chemical cycling. However, it is often difficult to quantify rates or to link processes to specific taxa or individual cells, especially in environments where there are few cultured representatives with known physiology. Here, we describe the use of the redox-enzyme-sensitive molecular probe RedoxSensor™ Green to measure rates of anaerobic electron transfer physiology (i.e., sulfate reduction and methanogenesis) in individual cells and link those measurements to genomic sequencing of the same single cells. We used this method to investigate microbial activity in hot, anoxic, low-biomass (~103 cells mL-1) groundwater of the Death Valley Regional Flow System, California. Combining this method with electron donor amendment experiments and metatranscriptomics confirmed that the abundant spore formers including Candidatus Desulforudis audaxviator were actively reducing sulfate in this environment, most likely with acetate and hydrogen as electron donors. Using this approach, we measured environmental sulfate reduction rates at 0.14 to 26.9 fmol cell-1 h-1. Scaled to volume, this equates to a bulk environmental rate of ~103 pmol sulfate L-1 d-1, similar to potential rates determined with radiotracer methods. Despite methane in the system, there was no evidence for active microbial methanogenesis at the time of sampling. Overall, this method is a powerful tool for estimating species-resolved, single-cell rates of anaerobic metabolism in low-biomass environments while simultaneously linking genomes to phenomes at the single-cell level. We reveal active elemental cycling conducted by several species, with a large portion attributable to Ca. Desulforudis audaxviator.


Assuntos
Ecossistema , Meio Ambiente , Transporte de Elétrons , Sulfatos/química , Respiração Celular
2.
ISME J ; 17(6): 891-902, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37012337

RESUMO

The phyla Nitrospirota and Nitrospinota have received significant research attention due to their unique nitrogen metabolisms important to biogeochemical and industrial processes. These phyla are common inhabitants of marine and terrestrial subsurface environments and contain members capable of diverse physiologies in addition to nitrite oxidation and complete ammonia oxidation. Here, we use phylogenomics and gene-based analysis with ancestral state reconstruction and gene-tree-species-tree reconciliation methods to investigate the life histories of these two phyla. We find that basal clades of both phyla primarily inhabit marine and terrestrial subsurface environments. The genomes of basal clades in both phyla appear smaller and more densely coded than the later-branching clades. The extant basal clades of both phyla share many traits inferred to be present in their respective common ancestors, including hydrogen, one-carbon, and sulfur-based metabolisms. Later-branching groups, namely the more frequently studied classes Nitrospiria and Nitrospinia, are both characterized by genome expansions driven by either de novo origination or laterally transferred genes that encode functions expanding their metabolic repertoire. These expansions include gene clusters that perform the unique nitrogen metabolisms that both phyla are most well known for. Our analyses support replicated evolutionary histories of these two bacterial phyla, with modern subsurface environments representing a genomic repository for the coding potential of ancestral metabolic traits.


Assuntos
Bactérias , Evolução Biológica , Filogenia , Nitrogênio/metabolismo
3.
Nature ; 612(7941): 764-770, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477536

RESUMO

The ocean-atmosphere exchange of CO2 largely depends on the balance between marine microbial photosynthesis and respiration. Despite vast taxonomic and metabolic diversity among marine planktonic bacteria and archaea (prokaryoplankton)1-3, their respiration usually is measured in bulk and treated as a 'black box' in global biogeochemical models4; this limits the mechanistic understanding of the global carbon cycle. Here, using a technology for integrated phenotype analyses and genomic sequencing of individual microbial cells, we show that cell-specific respiration rates differ by more than 1,000× among prokaryoplankton genera. The majority of respiration was found to be performed by minority members of prokaryoplankton (including the Roseobacter cluster), whereas cells of the most prevalent lineages (including Pelagibacter and SAR86) had extremely low respiration rates. The decoupling of respiration rates from abundance among lineages, elevated counts of proteorhodopsin transcripts in Pelagibacter and SAR86 cells and elevated respiration of SAR86 at night indicate that proteorhodopsin-based phototrophy3,5-7 probably constitutes an important source of energy to prokaryoplankton and may increase growth efficiency. These findings suggest that the dependence of prokaryoplankton on respiration and remineralization of phytoplankton-derived organic carbon into CO2 for its energy demands and growth may be lower than commonly assumed and variable among lineages.


Assuntos
Organismos Aquáticos , Archaea , Bactérias , Ciclo do Carbono , Respiração Celular , Plâncton , Alphaproteobacteria/genética , Alphaproteobacteria/crescimento & desenvolvimento , Alphaproteobacteria/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Plâncton/classificação , Plâncton/genética , Plâncton/crescimento & desenvolvimento , Plâncton/metabolismo , Água do Mar/microbiologia , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/metabolismo , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Respiração Celular/fisiologia , Fotossíntese
4.
Environ Microbiol ; 23(7): 4034-4053, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34111905

RESUMO

Hot springs integrate hydrologic and geologic processes that vary over short- and long-term time scales. However, the influence of temporal hydrologic and geologic change on hot spring biodiversity is unknown. Here, we coordinated near-weekly, cross-seasonal (~140 days) geochemical and microbial community analyses of three widely studied hot springs with local precipitation data in Yellowstone National Park. One spring ('HFS') exhibited statistically significant, coupled microbial and geochemical variation across seasons that was associated with recent precipitation patterns. Two other spring communities, 'CP' and 'DS', exhibited minimal to no variation across seasons. Variability in the seasonal response of springs is attributed to differences in the timing and extent of aquifer recharge with oxidized near-surface water from precipitation. This influx of oxidized water is associated with changes in community composition, and in particular, the abundances of aerobic sulfide-/sulfur-oxidizers that can acidify waters. During sampling, a new spring formed after a period of heavy precipitation and its successional dynamics were also influenced by surface water recharge. Collectively, these results indicate that changes in short-term hydrology associated with precipitation can impact hot spring geochemistry and microbial biodiversity. These results point to potential susceptibility of certain hot springs and their biodiversity to sustained, longer-term hydrologic changes.


Assuntos
Fontes Termais , Biodiversidade , Geologia , Hidrologia , RNA Ribossômico 16S , Estações do Ano
5.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32198176

RESUMO

Microbial mat communities are associated with extensive (∼700 km2) and morphologically variable carbonate structures, termed microbialites, in the hypersaline Great Salt Lake (GSL), Utah. However, whether the composition of GSL mat communities covaries with microbialite morphology and lake environment is unknown. Moreover, the potential adaptations that allow the establishment of these extensive mat communities at high salinity (14% to 17% total salts) are poorly understood. To address these questions, microbial mats were sampled from seven locations in the south arm of GSL representing different lake environments and microbialite morphologies. Despite the morphological differences, microbialite-associated mats were taxonomically similar and were dominated by the cyanobacterium Euhalothece and several heterotrophic bacteria. Metagenomic sequencing of a representative mat revealed Euhalothece and subdominant Thiohalocapsa populations that harbor the Calvin cycle and nitrogenase, suggesting they supply fixed carbon and nitrogen to heterotrophic bacteria. Fifteen of the next sixteen most abundant taxa are inferred to be aerobic heterotrophs and, surprisingly, harbor reaction center, rhodopsin, and/or bacteriochlorophyll biosynthesis proteins, suggesting aerobic photoheterotrophic (APH) capabilities. Importantly, proteins involved in APH are enriched in the GSL community relative to that in microbialite mat communities from lower salinity environments. These findings indicate that the ability to integrate light into energy metabolism is a key adaptation allowing for robust mat development in the hypersaline GSL.IMPORTANCE The earliest evidence of life on Earth is from organosedimentary structures, termed microbialites, preserved in 3.481-billion-year-old (Ga) rocks. Phototrophic microbial mats form in association with an ∼700-km2 expanse of morphologically diverse microbialites in the hypersaline Great Salt Lake (GSL), Utah. Here, we show taxonomically similar microbial mat communities are associated with morphologically diverse microbialites across the lake. Metagenomic sequencing reveals an abundance and diversity of autotrophic and heterotrophic taxa capable of harvesting light energy to drive metabolism. The unexpected abundance of and diversity in the mechanisms of harvesting light energy observed in GSL mat populations likely function to minimize niche overlap among coinhabiting taxa, provide a mechanism(s) to increase energy yield and osmotic balance during salt stress, and enhance fitness. Together, these physiological benefits promote the formation of robust mats that, in turn, influence the formation of morphologically diverse microbialite structures that can be imprinted in the rock record.


Assuntos
Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Lagos/microbiologia , Microbiota , Cianobactérias/classificação , Cianobactérias/fisiologia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Salinidade , Utah
6.
ISME J ; 14(5): 1316-1331, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32066874

RESUMO

The origin(s) of dissimilatory sulfate and/or (bi)sulfite reducing organisms (SRO) remains enigmatic despite their importance in global carbon and sulfur cycling since at least 3.4 Ga. Here, we describe novel, deep-branching archaeal SRO populations distantly related to other Diaforarchaea from two moderately acidic thermal springs. Dissimilatory (bi)sulfite reductase homologs, DsrABC, encoded in metagenome assembled genomes (MAGs) from spring sediments comprise one of the earliest evolving Dsr lineages. DsrA homologs were expressed in situ under moderately acidic conditions. MAGs lacked genes encoding proteins that activate sulfate prior to (bi)sulfite reduction. This is consistent with sulfide production in enrichment cultures provided sulfite but not sulfate. We suggest input of volcanic sulfur dioxide to anoxic spring-water yields (bi)sulfite and moderately acidic conditions that favor its stability and bioavailability. The presence of similar volcanic springs at the time SRO are thought to have originated (>3.4 Ga) may have supplied (bi)sulfite that supported ancestral SRO. These observations coincide with the lack of inferred SO42- reduction capacity in nearly all organisms with early-branching DsrAB and which are near universally found in hydrothermal environments.


Assuntos
Euryarchaeota/fisiologia , Sulfatos/metabolismo , Sulfitos/metabolismo , Archaea/genética , Euryarchaeota/genética , Metagenoma , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Filogenia , Enxofre/metabolismo
7.
Astrobiology ; 19(12): 1505-1522, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31592688

RESUMO

Decompressional boiling of ascending hydrothermal waters and separation into a vapor (gas) and a liquid phase drive extensive variation in the geochemical composition of hot spring waters. Yet little is known of how the process of phase separation influences the distribution of microbial metabolisms in springs. Here, we determined the variation in protein coding genes in 51 metagenomes from chemosynthetic hot spring communities that span geochemical gradients in Yellowstone National Park. The 51 metagenomes could be divided into 5 distinct groups that correspond to low and high temperatures and acidic and circumneutral/alkaline springs. A fifth group primarily comprised metagenomes from springs with moderate acidity and that are influenced by elevated volcanic gas input. Protein homologs putatively involved in the oxidation of sulfur compounds, a process that leads to acidification of spring waters, in addition to those involved in the reduction of sulfur compounds were enriched in metagenomes from acidic springs sourced by vapor phase gases. Metagenomes from springs with evidence for elevated volcanic gas input were enriched in protein homologs putatively involved in oxidation of those gases, including hydrogen and methane. Finally, metagenomes from circumneutral/alkaline springs sourced by liquid phase waters were enriched in protein homologs putatively involved in heterotrophy and respiration of oxidized nitrogen compounds and oxygen. These results indicate that the geological process of phase separation shapes the ecology of thermophilic communities through its influence on the availability of nutrients in the form of gases, solutes, and minerals. Microbial acidification of hot spring waters further influences the kinetic and thermodynamic stabilities of nutrients and their bioavailability. These data therefore provide an important framework to understand how geological processes have shaped the evolutionary history of chemosynthetic thermophiles and how these organisms, in turn, have shaped their geochemical environments.


Assuntos
Extremófilos/isolamento & purificação , Sedimentos Geológicos/microbiologia , Fontes Termais/microbiologia , Metagenoma , Microbiota/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Biológica , Extremófilos/fisiologia , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Fontes Termais/química , Temperatura Alta/efeitos adversos , Concentração de Íons de Hidrogênio , Oxirredução , Enxofre/metabolismo , Termodinâmica , Microbiologia da Água
8.
Environ Microbiol ; 21(11): 4180-4195, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31397054

RESUMO

Little is known about how the geological history of an environment shapes its physical and chemical properties and how these, in turn, influence the assembly of communities. Evening primrose (EP), a moderately acidic hot spring (pH 5.6, 77.4°C) in Yellowstone National Park (YNP), has undergone dramatic physicochemical change linked to seismic activity. Here, we show that this legacy of geologic change led to the development of an unusual sulphur-rich, anoxic chemical environment that supports a unique archaeal-dominated and anaerobic microbial community. Metagenomic sequencing and informatics analyses reveal that >96% of this community is supported by dissimilatory reduction or disproportionation of inorganic sulphur compounds, including a novel, deeply diverging sulphate-reducing thaumarchaeote. When compared to other YNP metagenomes, the inferred functions of EP populations were like those from sulphur-rich acidic springs, suggesting that sulphur may overprint the predominant influence of pH on the composition of hydrothermal communities. Together, these observations indicate that the dynamic geological history of EP underpins its unique geochemistry and biodiversity, emphasizing the need to consider the legacy of geologic change when describing processes that shape the assembly of communities.


Assuntos
Biodiversidade , Fontes Termais/química , Microbiota/fisiologia , Parques Recreativos , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Geologia , Metagenoma , Oxirredução , Tempo
9.
Environ Microbiol ; 21(10): 3816-3830, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31276280

RESUMO

Hydrogen (H2 ) is enriched in hot springs and can support microbial primary production. Using a series of geochemical proxies, a model to describe variable H2 concentrations in Yellowstone National Park (YNP) hot springs is presented. Interaction between water and crustal iron minerals yields H2 that partition into the vapour phase during decompressional boiling of ascending hydrothermal fluids. Variable vapour input leads to differences in H2 concentration among springs. Analysis of 50 metagenomes from a variety of YNP springs reveals that genes encoding oxidative hydrogenases are enriched in communities inhabiting springs sourced with vapour-phase gas. Three springs in the Smokejumper (SJ) area of YNP that are sourced with vapour-phase gas and with the most H2 in YNP were examined to determine the fate of H2 . SJ3 had the most H2 , the most 16S rRNA gene templates and the greatest abundance of culturable hydrogenotrophic and autotrophic cells of the three springs. Metagenomics and transcriptomics of SJ3 reveal a diverse community comprised of abundant populations expressing genes involved in H2 oxidation and carbon dioxide fixation. These observations suggest a link between geologic processes that generate and source H2 to hot springs and the distribution of organisms that use H2 to generate energy.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Fontes Termais/química , Hidrogênio/química , Hidrogenase/genética , Geologia , Metagenoma/genética , Metagenômica , Filogenia , RNA Ribossômico 16S/genética
10.
Nat Commun ; 10(1): 681, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737379

RESUMO

Little is known of how mixing of meteoric and geothermal fluids supports biodiversity in non-photosynthetic ecosystems. Here, we use metagenomic sequencing to investigate a chemosynthetic microbial community in a hot spring (SJ3) of Yellowstone National Park that exhibits geochemistry consistent with mixing of a reduced volcanic gas-influenced end member with an oxidized near-surface meteoric end member. SJ3 hosts an exceptionally diverse community with representatives from ~50% of known higher-order archaeal and bacterial lineages, including several divergent deep-branching lineages. A comparison of functional potential with other available chemosynthetic community metagenomes reveals similarly high diversity and functional potentials (i.e., incorporation of electron donors supplied by volcanic gases) in springs sourced by mixed fluids. Further, numerous closely related SJ3 populations harbor differentiated metabolisms that may function to minimize niche overlap, further increasing endemic diversity. We suggest that dynamic mixing of waters generated by subsurface and near-surface geological processes may play a key role in the generation and maintenance of chemosynthetic biodiversity in hydrothermal and other similar environments.

11.
Ecology ; 100(3): e02611, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30636291

RESUMO

Microbialites, organosedimentary carbonate structures, cover approximately 20% of the basin floor in the south arm of Great Salt Lake, which ranges from ~12 to 15% salinity. Photosynthetic microbial mats associated with these benthic mounds contribute biomass that supports secondary production in the ecosystem, including that of the brine shrimp, Artemia franciscana. However, the effects of predicted increases in the salinity of the lake on the productivity and composition of these mats and on A. franciscana fecundity is not well documented. In the present study, we applied molecular and microcosm-based approaches to investigate the effects of changing salinity on (1) the primary productivity, abundance, and composition of microbialite-associated mats of GSL, and (2) the fecundity and survivability of the secondary consumer, A. franciscana. When compared to microcosms incubated closest to the in situ measured salinity of 15.6%, the abundance of 16S rRNA gene templates increased in microcosms with lower salinities and decreased in those with higher salinities following a 7-week incubation period. The abundance of 16S rRNA gene sequences affiliated with dominant primary producers, including the cyanobacterium Euhalothece and the diatom Navicula, increased in microcosms incubated at decreased salinity, but decreased in microcosms incubated at increased salinity. Increased salinity also decreased the rate of primary production in microcosm assays containing mats incubated for 7 weeks and decreased the number of A. franciscana cysts that hatched and survived. These results indicate that an increase in the salinity of GSL is likely to have a negative impact on the productivity of microbialite communities and the fecundity and survivability of A. franciscana. These observations suggest that a sustained increase in the salinity of GSL and the effects this has on primary and secondary production could have an upward and negative cascading effect on higher-trophic-level ecological compartments that depend on A. franciscana as a food source, including a number of species of migratory birds.


Assuntos
Lagos/química , Salinidade , Animais , Artemia , Ecossistema , RNA Ribossômico 16S , Utah
12.
Front Microbiol ; 9: 1762, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123204

RESUMO

Twelve evolutionarily unrelated oxidoreductases form enzyme complexes that catalyze the simultaneous coupling of exergonic and endergonic oxidation-reduction reactions to circumvent thermodynamic barriers and minimize free energy loss in a process known as flavin-based electron bifurcation. Common to these 12 bifurcating (Bf) enzymes are protein-bound flavin, the proposed site of bifurcation, and the electron carrier ferredoxin. Despite the documented role of Bf enzymes in balancing the redox state of intracellular electron carriers and in improving the efficiency of cellular metabolism, a comprehensive description of the diversity and evolutionary history of Bf enzymes is lacking. Here, we report the taxonomic distribution, functional diversity, and evolutionary history of Bf enzyme homologs in 4,588 archaeal, bacterial, and eukaryal genomes and 3,136 community metagenomes. Bf homologs were primarily detected in the genomes of anaerobes, including those of sulfate-reducers, acetogens, fermenters, and methanogens. Phylogenetic analyses of Bf enzyme catalytic subunits (oxidoreductases) suggest they were not a property of the Last Universal Common Ancestor of Archaea and Bacteria, which is consistent with the limited and unique taxonomic distributions of enzyme homologs among genomes. Further, phylogenetic analyses of oxidoreductase subunits reveal that non-Bf homologs predate Bf homologs. These observations indicate that multiple independent recruitments of flavoproteins to existing oxidoreductases enabled coupling of numerous new electron Bf reactions. Consistent with the role of these enzymes in the energy metabolism of anaerobes, homologs of Bf enzymes were enriched in metagenomes from subsurface environments relative to those from surface environments. Phylogenetic analyses of homologs from metagenomes reveal that the earliest evolving homologs of most Bf enzymes are from subsurface environments, including fluids from subsurface rock fractures and hydrothermal systems. Collectively, these data suggest strong selective pressures drove the emergence of Bf enzyme complexes via recruitment of flavoproteins that allowed for an increase in the efficiency of cellular metabolism and improvement in energy capture in anaerobes inhabiting a variety of subsurface anoxic habitats where the energy yield of oxidation-reduction reactions is generally low.

13.
Geobiology ; 16(6): 674-692, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30035368

RESUMO

The geochemistry of hot springs and the availability of oxidants capable of supporting microbial metabolisms are influenced by subsurface processes including the separation of hydrothermal fluids into vapor and liquid phases. Here, we characterized the influence of geochemical variation and oxidant availability on the abundance, composition, and activity of hydrogen (H2 )-dependent chemoautotrophs along the outflow channels of two-paired hot springs in Yellowstone National Park. The hydrothermal fluid at Roadside East (RSE; 82.4°C, pH 3.0) is acidic due to vapor-phase input while the fluid at Roadside West (RSW; 68.1°C, pH 7.0) is circumneutral due to liquid-phase input. Most chemotrophic communities exhibited net rates of H2 oxidation, consistent with H2 support of primary productivity, with one chemotrophic community exhibiting a net rate of H2 production. Abundant H2 -oxidizing chemoautotrophs were supported by reduction in oxygen, elemental sulfur, sulfate, and nitrate in RSW and oxygen and ferric iron in RSE; O2 utilizing hydrogenotrophs increased in abundance down both outflow channels. Sequencing of 16S rRNA transcripts or genes from native sediments and dilution series incubations, respectively, suggests that members of the archaeal orders Sulfolobales, Desulfurococcales, and Thermoproteales are likely responsible for H2 oxidation in RSE, whereas members of the bacterial order Thermoflexales and the archaeal order Thermoproteales are likely responsible for H2 oxidation in RSW. These observations suggest that subsurface processes strongly influence spring chemistry and oxidant availability, which in turn select for unique assemblages of H2 oxidizing microorganisms. Therefore, these data point to the role of oxidant availability in shaping the ecology and evolution of hydrogenotrophic organisms.


Assuntos
Fontes Termais/microbiologia , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Oxirredução , RNA Ribossômico 16S/genética
14.
Proc Natl Acad Sci U S A ; 113(49): E7927-E7936, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27872277

RESUMO

Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H2 Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH4 to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic ß-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H2 oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface.


Assuntos
Desnitrificação , Ecossistema , Metano/biossíntese , Microbiota , Enxofre/metabolismo , Processos Autotróficos , Carbono/metabolismo , Nitrogênio/metabolismo , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...